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Abstract: If the flow is compressible, heat due to friction as well as temperature change due to compression must be taken into 

account. In addition, it is necessary to consider the effects of the variation of viscosity with temperature. This dependence of temperature 

with viscosity and density makes the calculation of problems in viscous compressible flow much more difficult than that for the case of 

in-compressible flow. It’s necessary to consider equation of continuity momentum energy and reduced Navier-stokes equation to the the 

phenomenon of plane couette-flow for different values of Mach number and Prandtl numbers. The significance of four important 

Controlling parameters in viscous compressible fluids need to be discussed and illustrated. 
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Nomenclature 
 

ρ−density 

R−gas constant 

p−pressure 

τw−wall shearing stress 

u−velocity component along x axis 

Pr−prandtl number 

v−velocity component along y axis 

M−Mach number 

w−velocity component along z axis 

m−mass 

q −velocity vector 

M∞−Mach number of the plate motion 

µ−coefficient of viscosity 

T∞−temperature of moving plate 

k−thermal conductivity 

U−constant velocity of moving plate 

T−temperature 

qw−heat flow to the wall 

p−specific heat at constant pressure 

k−ratio of specific heats 

h−distance between the plates 

Tr−recovery temperature 

 

1. Introduction 
 

It may be recalled that a Couette flow is the flow between 

two parallel flat plates, the lower plate is at rest and the 

upper plate is moving with a velocity U parallel to the 

fixed plate. 

 

For a viscous compressible fluid in steady two-

dimensional flow the Navier-Stokes equations [1, 2, 3] in 

Cartesian coordinates with negligible body forces can be 

reduced to yield. 

 

 
 

 
 

The continuity equation is 

 

 
 

The energy equation is reduced to 
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The equation of state for a perfect gas is 

 

p = ρRT (1.5) 
 

Let x be the direction of the flow, y the direction normal 

to the flow, and the width of the plates parallel to the z-

direction be large compared to the distance h between the 

plates. For this simple configuration, we have 

 

 
 

The boundary conditions are then 

 

y = 0; u = 0; v = 0; q = qw; (τyz) = τw 

 

y = h; u = U; v = 0; p = p1;            (1.7) 

 

 
 

According to Equations (1.3) and (1.7) and the velocity 

component u is independent of x. Hence, Equations 1.1 

and 1.2 and reduce to 

 

 
 

which yields, after integration, 

 

 
 

The component of the velocity u is found, 

 

 
 

where the constant of integration τw. is determined from 

the condition at the fixed plate as 

 

 
 

The energy equation under the present flow conditions 

reduces to (T∼1/ρ ∼ u), 

 

 
 

Substituting Equation (1.11) into (1.12), we obtain 

 

 
 

Integrating, we get 

 

 
 

where the constant of integration is determined from the 

condition at the fixed plate, i.e., 

 

 
 

The negative sign is conventional, to show that qw, (the 

flow of heat [2] through the wall per unit time) is positive 

when (dT /dy)w, is negative. With the relation in Equation 

1.15 we can rewrite Equation 1.16 in the form 

 

 
 

From either the simple kinetic theory of gases or empirical 

data, the coefficient of viscosity µ can often be expressed 

with sufficient accuracy as a power of the absolute 

temperature, 

 

 
 

For air at ordinary temperature, m = 0:76 is generally 

used. As the temperature increases, m decreases toward 

1/2. The Prandtl number Pr is very nearly constant (of 

order unity) for all common gases. Since Cp is also nearly 

constant for a fairly wide range of temperatures around 

ordinary temperatures, the coefficient of heat conductivity 

[3] k is directly proportional to µ. Based on these 

arguments Eq. (12-9) may be written as 
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The integration of Equation (1.15) results in 

 

 

 

where C = CpTw and Tw corresponds to the temperature at 

the fixed plate. Substituting equation (1.10) into equation 

(1.19), one finds 

 

 

 

2. Temperature and Velocity Distributions in Couette flow 
 

If the temperature of the moving plate is denoted by T∞ the constant of integration in Equation (1.20) may be determined 

from the boundary condition at the upper plate, i.e., 

 

 
 

With this value of C, equation (1.20) becomes 

 

 
 

Dividing the above equation by CpT∞. and remembering 

 

 
 

the temperature distribution in Couette flow is obtained: 

 

 
 

The velocity distribution in Couette flow may be obtained as follows 

 

 
 

With the relation of µ in equation (1.17) and T in (2.3), (2.4) may be written as 

 

 
 

For an arbitrary value of m the integrals have to be evaluated numerically. If m = 1 equation (2.5) yields 

 

 
 

For the case of an adiabatic wall, qw = 0, and (2.6) reduces to 

 

 
 

The shearing stress Tw can be obtained by letting u = U and y = h. The result may be written as 
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Dividing (2.7) by (2.8), we obtain 

 
 

When 

 
we have 

 

 
 

The velocity distribution of the Couette flow is plotted in 

Fig.(2.1) as a function of the distance from the fixed wall 

for various Mach numbers and Prandtl numbers[7]. It is 

seen that the effect of the Mach number on the Couette 

flow is to decrease the velocity gradient at the stationary 

wall and to increase it at the moving wall. Since the 

Prandtl number appears paired with the Mach number 

(both increase heat transfer to the fluid), it has the same 

influence on the velocity distribution as the Mach number. 

A comparison of the velocity distributions for m = 1:0 and 

m = 0:76 also depicted in Fig. (2.1). 

 

The temperature distribution of the Couette flow can be 

easily calculated [7] once the velocity distribution has 

been determined. 

 

 
Figure 2.1 

 

 
Figure 2.2 

 

Typical temperature profiles in Couette flow (PrM
1
∞ = 2) 

for an adiabatic wall (qw = 0), a heated wall (qw < 0), and a 

cooled wall (qw > 0) are shown in Fig. (2.3). It is 

interesting to note that the temperature remains unchanged 

for an incompressible fluid. Also, the temperature gradient 

becomes zero for a compressible flow with an adiabatic 

wall. This special temperature at the fixed insulated wall 

(adiabatic wall) is called the recovery temperature, and is 

denoted by Tr. According to (2.3) we can find Tr, by 

putting qw = 0 and u = 0 as follows: 

 

 
 

The coefficient of friction [8] at the fixed wall (qw = 0) 

may be obtained from (2.8), 

 

 
 

where Re = Uh=v∞. The shearing stress of (2.7) reduces to 

the first term when M∞→0. 

 

It must be noted that the velocity gradient for a 

compressible fluid varies from the stationary wall to the 
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moving wall Fig. (2.1), and the shearing stress given in 

(2.7) is a constant in Couette flow. The constancy of the 

shearing stress in Couette flow [8, 9, 10] can be shown 

from the velocity gradient by 

 

 
 

According to this expression we need only to show that 

 

 
 

The viscosity is given by (1.17), and with the aid of (2.3) 

it may be written as (qw = 0) 

 

 
 

Differentiating (2.7) with respect to y and imposing the 

limits y = 0 and y = h, we have 

 

 
 

and 

 

 
 

The ratio of the velocity gradients in (2.15) and (2.16) will 

give 

 

 
 

Hence (2.15) is verified and the shearing stress is constant 

in Couette flow. 

 

The increase of the skin-friction coefficient at the fixed 

wall (qw = 0) with the increase of the Mach number and 

Prandtl number is depicted in below Fig. (2.3) 

 

3. Conclusions 
 

Plane couette flow is discussed. The effects of mach 

number and prandtl number of the velocity distribution 

and coefficient of friction are shown with figures 

wherever necessary. Temperature distributions and heat 

flux at the wall are illustrated for different values of mach 

number and Prandtl number. 

 

 
Figure 2.3 

 

4. Scope of Research 
 

The observations that are made in this paper plays vital 

role in problems related to mass and Heat transfer flows 

and Aerodynamics. 
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